12 research outputs found

    Image processing and machine learning in the morphological analysis of blood cells

    Get PDF
    Introduction: This review focuses on how image processing and machine learning can be useful for the morphological characterization and automatic recognition of cell images captured from peripheral blood smears. Methods: The basics of the 3 core elements (segmentation, quantitative features, and classification) are outlined, and recent literature is discussed. Although red blood cells are a significant part of this context, this study focuses on malignant lymphoid cells and blast cells. Results: There is no doubt that these technologies may help the cytologist to perform efficient, objective, and fast morphological analysis of blood cells. They may also help in the interpretation of some morphological features and may serve as learning and survey tools. Conclusion: Although research is still needed, it is important to define screening strategies to exploit the potential of image-based automatic recognition systems integrated in the daily routine of laboratories along with other analysis methodologies.Peer ReviewedPostprint (published version

    A dataset of microscopic peripheral blood cell images for development of automatic recognition systems

    Get PDF
    This article makes available a dataset that was used for the development of an automatic recognition system of peripheral blood cell images using convolutional neural networks [1]. The dataset contains a total of 17,092 images of individual normal cells, which were acquired using the analyzer CellaVision DM96 in the Core Laboratory at the Hospital Clinic of Barcelona. The dataset is organized in the following eight groups: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature granulocytes (promyelocytes, myelocytes, and metamyelocytes), erythroblasts and platelets or thrombocytes. The size of the images is 360¿×¿363 pixels, in format jpg, and they were annotated by expert clinical pathologists. The images were captured from individuals without infection, hematologic or oncologic disease and free of any pharmacologic treatment at the moment of blood collection. This high-quality labelled dataset may be used to train and test machine learning and deep learning models to recognize different types of normal peripheral blood cells. To our knowledge, this is the first publicly available set with large numbers of normal peripheral blood cells, so that it is expected to be a canonical dataset for model benchmarking.Peer ReviewedPostprint (published version

    A deep learning pproach for the morphological recognition of reactive lymphocytes in patients with COVID-19 infection

    Get PDF
    Laboratory medicine plays a fundamental role in the detection, diagnosis and management of COVID-19 infection. Recent observations of the morphology of cells circulating in blood found the presence of particular reactive lymphocytes (COVID-19 RL) in some of the infected patients and demonstrated that it was an indicator of a better prognosis of the disease. Visual morphological analysis is time consuming, requires smear review by expert clinical pathologists, and is prone to subjectivity. This paper presents a convolutional neural network system designed for automatic recognition of COVID-19 RL. It is based on the Xception71 structure and is trained using images of blood cells from real infected patients. An experimental study is carried out with a group of 92 individuals. The input for the system is a set of images selected by the clinical pathologist from the blood smear of a patient. The output is the prediction whether the patient belongs to the group associated with better prognosis of the disease. A threshold is obtained for the classification system to predict that the smear belongs to this group. With this threshold, the experimental test shows excellent performance metrics: 98.3% sensitivity and precision, 97.1% specificity, and 97.8% accuracy. The system does not require costly calculations and can potentially be integrated into clinical practice to assist clinical pathologists in a more objective smear review for early prognosis.Peer ReviewedPostprint (published version

    Generación automática de imágenes artificiales de leucocitos y células leucémicas mediante Generative Adversarial Networks (SyntheticCellGAN)

    No full text
    Background and objectives: Visual analysis of cell morphology has an important role in the diagnosis of hematological diseases. Morphological cell recognition is a challenge that requires experience and in-depth review by clinical pathologists. Within the new trend of introducing computer-aided diagnostic tools in laboratory medicine, models based on deep learning are being developed for the automatic identification of different types of cells in peripheral blood. In general, well-annotated large image sets are needed to train the models to reach a desired classification performance. This is especially relevant when it comes to discerning between cell images in which morphological differences are subtle and when it comes to low prevalent diseases with the consequent difficulty in collecting cell images. The objective of this work is to develop, train and validate SyntheticCellGAN (SCG), a new system for the automatic generation of artificial images of white blood cells, maintaining morphological characteristics very close to real cells found in practice in clinical laboratories. Methods: SCG is designed with two sequential generative adversarial networks. First, a Wasserstein structure is used to transform random noise vectors into low resolution images of basic mononuclear cells. Second, the concept of image-to-image translation is used to build specific models that transform the basic images into high-resolution final images with the realistic morphology of each cell type target: 1) the five groups of normal leukocytes (lymphocytes, monocytes, eosinophils, neutrophils and basophils); 2) atypical promyelocytes and hairy cells, which are two relevant cell types of complex morphology with low abundance in blood smears. Results: The images of the SCG system are evaluated with four experimental tests. In the first test we evaluated the generated images with quantitative metrics for GANs. In the second test, morphological verification of the artificial images is performed by expert clinical pathologists with 100% accuracy. In the third test, two classifiers based on convolutional neural networks (CNN) previously trained with images of real cells are used. Two sets of artificial images of the SCG system are classified with an accuracy of 95.36% and 94%, respectively. In the fourth test, three CNN classifiers are trained with artificial images of the SCG system. Real cells are identified with an accuracy ranging from 87.7% to 100%. Conclusions: The SCG system has proven effective in creating images of all normal leukocytes and two low-prevalence cell classes associated with diseases such as acute promyelocyte leukemia and hairy cell leukemia. Once trained, the system requires low computational cost and can help augment high-quality image datasets to improve automatic recognition model training for clinical laboratory practice.Peer ReviewedPostprint (published version

    A deep learning approach for segmentation of red blood cell images and malaria detection

    Get PDF
    Malaria is an endemic life-threating disease caused by the unicellular protozoan parasites of the genus Plasmodium. Confirming the presence of parasites early in all malaria cases ensures species-specific antimalarial treatment, reducing the mortality rate, and points to other illnesses in negative cases. However, the gold standard remains the light microscopy of May-Grünwald–Giemsa (MGG)-stained thin and thick peripheral blood (PB) films. This is a time-consuming procedure, dependent on a pathologist’s skills, meaning that healthcare providers may encounter difficulty in diagnosing malaria in places where it is not endemic. This work presents a novel three-stage pipeline to (1) segment erythrocytes, (2) crop and mask them, and (3) classify them into malaria infected or not. The first and third steps involved the design, training, validation and testing of a Segmentation Neural Network and a Convolutional Neural Network from scratch using a Graphic Processing Unit. Segmentation achieved a global accuracy of 93.72% over the test set and the specificity for malaria detection in red blood cells (RBCs) was 87.04%. This work shows the potential that deep learning has in the digital pathology field and opens the way for future improvements, as well as for broadening the use of the created networks.Peer ReviewedPostprint (published version

    Atypical lymphoid cells circulating in blood in COVID-19 infection: morphology, immunophenotype and prognosis value

    Get PDF
    Aims Atypical lymphocytes circulating in blood have been reported in COVID-19 patients. This study aims to (1) analyse if patients with reactive lymphocytes (COVID-19 RL) show clinical or biological characteristics related to outcome; (2) develop an automatic system to recognise them in an objective way and (3) study their immunophenotype. Methods Clinical and laboratory findings in 36 COVID-19 patients were compared between those showing COVID-19 RL in blood (18) and those without (18). Blood samples were analysed in Advia2120i and stained with May Grünwald-Giemsa. Digital images were acquired in CellaVisionDM96. Convolutional neural networks (CNNs) were used to accurately recognise COVID-19 RL. Immunophenotypic study was performed throughflow cytometry. Results Neutrophils, D-dimer, procalcitonin, glomerular filtration rate and total protein values were higher in patients without COVID-19 RL (p<0.05) and four of these patients died. Haemoglobin and lymphocyte counts were higher (p<0.02) and no patients died in the group showing COVID-19 RL. COVID-19 RL showed a distinct deep blue cytoplasm with nucleus mostly in eccentric position. Through two sequential CNNs, they were automatically distinguished from normal lymphocytes and classical RL with sensitivity, specificity and overall accuracy values of 90.5%, 99.4% and 98.7%, respectively. Immunophenotypic analysis revealed COVID-19 RL are mostly activated effector memory CD4 and CD8 T cells. Conclusion We found that COVID-19 RL are related to a better evolution and prognosis. They can be detected by morphology in the smear review, being the computerised approach proposed useful to enhance a more objective recognition. Their presence suggests an abundant production of virus-specific T cells, thus explaining the better outcome of patients showing these cells circulating in blood.Peer ReviewedPostprint (published version

    Tumor Surface Regularity at MR Imaging Predicts Survival and Response to Surgery in Patients with Glioblastoma.

    No full text
    Purpose To evaluate the prognostic and predictive value of surface-derived imaging biomarkers obtained from contrast material-enhanced volumetric T1-weighted pretreatment magnetic resonance (MR) imaging sequences in patients with glioblastoma multiforme. Materials and Methods A discovery cohort from five local institutions (165 patients; mean age, 62 years ± 12 [standard deviation]; 43% women and 57% men) and an independent validation cohort (51 patients; mean age, 60 years ± 12; 39% women and 61% men) from The Cancer Imaging Archive with volumetric T1-weighted pretreatment contrast-enhanced MR imaging sequences were included in the study. Clinical variables such as age, treatment, and survival were collected. After tumor segmentation and image processing, tumor surface regularity, measuring how much the tumor surface deviates from a sphere of the same volume, was obtained. Kaplan-Meier, Cox proportional hazards, correlations, and concordance indexes were used to compare variables and patient subgroups. Results Surface regularity was a powerful predictor of survival in the discovery (P = .005, hazard ratio [HR] = 1.61) and validation groups (P = .05, HR = 1.84). Multivariate analysis selected age and surface regularity as significant variables in a combined prognostic model (
    corecore